જો સમીકરણ ${x^2} + \alpha x + \beta = 0$ ના બીજો $\alpha ,\beta $ એવા મળે કે જેથી $\alpha \ne \beta $ અને અસમતા $\left| {\left| {y - \beta } \right| - \alpha } \right| < \alpha $ હોય તો
અસમતા એ $y$ ની બે પૂર્ણાક કિમતોથી સંતોષાય છે
અસમતાના બધા ઉકેલો $y \in (-4, 2)$ માં મળે
સમીકરણના ઉકેલો સમાન ચિહનોના છે
${x^2} + \alpha x + \beta > 0\,\forall \,x \in \,\left[ { - 1,0} \right]$
સમીકરણ $x+1-2 \log _{2}\left(3+2^{x}\right)+2 \log _{4}\left(10-2^{-x}\right)=0$ ના ઉકેલનો સરવાળો મેળવો.
સમીકરણ ${4^x} - {3^{x\,\; - \;\frac{1}{2}}} = {3^{x + \frac{1}{2}}} - {2^{2x - 1}}\,$ માં ${\rm{x}}$ કિંમત =.....
સમીકરણ $|x{|^2}$-$3|x| + 2 = 0$ ના વાસ્તવિક બીજની સંખ્યા મેળવો.
જો વિધેય $f(x)=\frac{2 x^2-3 x+8}{2 x^2+3 x+8}$ ની મહતમ અને ન્યૂનતમ કિમંતો નો સરવાળો $\frac{m}{n}$ છે કે જ્યાં $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$. તો $\mathrm{m}+\mathrm{n}$ ની કિમંત મેળવો.
જો $\mathrm{a}=\max _{x \in R}\left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}$ અને $\beta=\min _{x \in R}\left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}$ આપેલ છે અને જો દ્રીઘાત સમીકરણ $8 x^{2}+b x+c=0$ ના બીજો $\alpha^{1 / 5}$ અને $\beta^{1 / 5}$, હોય તો $c-b$ ની કિમંત મેળવો.